QUIET COMPUTING WITH BSD

Fan control with sysctl hw.sensors

Constantine A. Murenin コンスタンティン

> University of Waterloo Waterloo, Ontario, Canada

AsiaBSDCon 2010 Tokyo University of Science, Tokyo, Japan 11/14 March 2010

and the second second

Slow fans down, not speed 'em up! • Slower speed \rightarrow less noise \rightarrow less stress for the user \sim less stress \rightarrow more motivation Concentrated on commonplace desktop hardware Winbond Super I/O chips are ubiquitous Don't reinvent the wheel — let the chip do the job

FAN CONTROL THROUGH BIOS

Intel D201GLY2

BIOS → Advanced → Fan Control Conf. → System Fan Control

Disable

Enable

	System Setup	
Advanced		
Fan Control Configuration System Fan Control	<enable></enable>	
	Disable Enable	
		11-2-1
\geq	C	Ti=Select Item Enter=Change Setting Esc=Discard Changes

The state of the second of the

FAN CONTROL THROUGH ACPI

The set of the

- Thermal Zones with Active Cooling objects
- Concept of a Fan Device with a binary state
- Temperature thresholds for Fan Device engagement
- Fan control is still rarely available through ACPI on common desktop hardware
- Not too useful for custom-assembled boxes anyway

FAN CONTROL IN WINDOWS

the stand of the second of the

SpeedFan on Windows

- Closed-source
- Can control the fan duty cycle
- Lacks interfacing for in-chip thermal-based control

FAN CONTROL IN LINUX

The second second and the second of the second s

Im_sensors

- too difficult to configure :p
- not available on any BSD systems

WINBOND SUPER I/O HARDWARE MONITORS

The second s

Several fan-controlling options:

- Manual PWM/DC mode
- Thermal Cruise
- Fan Speed Cruise
- Smart Fan III

HOW DO FANS WORK?

A The second second and the second of the second second second second second second second second second second

- Generally, fans are rated for + I2V (100% duty cycle)
- Most still run reliably at +7V (58% duty cycle)
- Few fans run at lower than +5V (42% duty cycle)

WHAT'S PWM?

The set of the set of

- Pulse-width modulation
- Controls the amount of power sent to a load
 - voltage goes from high to low to high very rapidly, with a certain duty cycle
- More efficient when compared with rheostats (according to wikipedia)

MANUAL MODE

and the second and the second of the second

- The duty cycle is controlled through software
- Software-based monitoring loop would be required to accommodate reduced noise and excessive heat during high-workload
- Settings for each fan output:
 - duty cycle
 - PWM / DC and PWM frequency (if applicable)

THERMAL CRUISE

The second se

- Configure the chip to do the monitoring loop
- Settings:
 - target temperature and tolerance (e.g. +55°C ±2°C)
 - fan start-up (e.g. 60%) and fan stop values (e.g. 40%)
 - should fan be turned off completely?
 - stop time / step-down time / step-up time

FAN SPEED CRUISE

and the second of the

Settings:

- target speed and tolerance
- step-down time / step-up time
- But what's the benefit vs. the Manual mode?

SMART FAN III

an and the second bolt with the month of the second s

- An advanced self-adjusting algorithm with variable target temperature and tolerance levels
- See Winbond datasheets for details

OPENBSD SYSCTL HW.SENSORS

The second se

- The fan-controlling patch released on 2009-05-08 on tech@openbsd.org
 - http://sensors.cnst.su/fanctl/tech@openbsd.org.2009-05-08.fanctl.patch.eml
- The following families of chips are supported:
 - W83627HF (PWM)
 - W83627THF / W83637HF (manual / thermal)
 - W83627EHF / W83627DHG (manual / thermal)

DRAGONFLY BSD

States and the second s

- The fan-controlling patch was ported from OpenBSD to DragonFly BSD yesterday
- Available in the *fanctl* branch on git://leaf.dragonflybsd.org/~cnst/dragonfly.git
- Functionality is currently the same as with OpenBSD
- Will likely be integrated into the master branch after more testing

THE HACK

the start of the second second and be and the second second second second second second second second second s

- Integer values passed back to individual sensors through sysctl (not struct sensor itsels!)
- In the regular refresh procedure, sensor drivers check if a value has been placed, and update the chip if it has
- Chip readings are always taken from hardware
- Chip behaviour is NOT modified by this patch unless the user specifically requests so via sysctl

W83627EHF / W83627DHG

The second s

Appear to be the latest and most popular chips percent{0,1,2,3} — summary and duty cycle temp{3,4,5,6} — target temperature temp{7,8,9,10} — temperature tolerance percent{4,5,6,7} and {8,9,10,11} — Start-up and Stop indicator{0,1,2,3} — PWM/DC mode switch

D201GLY2 / W83627DHG

The second second and the second s hw.sensors.cpu0.temp0=58.00 degC hw.sensors.lm1.temp0=45.00 degC (Sys) hw.sensors.lm1.temp1=51.00 degC (CPU) hw.sensors.lm1.temp2=14.50 degC (Aux) hw.sensors.lm1.temp3=38.00 degC (Sys Target) hw.sensors.lm1.temp4=unknown (CPU Target) hw.sensors.lm1.temp5=unknown (Aux Target) hw.sensors.lm1.temp6=unknown (CPU Target) hw.sensors.lm1.temp7=2.00 degC (Sys Tolerance) hw.sensors.lm1.temp8=unknown (CPU Tolerance) hw.sensors.lm1.temp9=unknown (Aux Tolerance) hw.sensors.lm1.temp10=unknown (CPU Tolerance) hw.sensors.lm1.fan0=1854 RPM (Sys) hw.sensors.lm1.volt0=1.34 VDC (VCore) hw.sensors.lm1.volt1=12.20 VDC (+12V) hw.sensors.lm1.volt2=3.33 VDC (+3.3V) hw.sensors.lm1.volt3=3.33 VDC (+3.3V) hw.sensors.lm1.volt4=-3.95 VDC (-12V) hw.sensors.lm1.volt5=0.11 VDC hw.sensors.lm1.volt6=1.62 VDC hw.sensors.lm1.volt7=3.28 VDC (3.3VSB) hw.sensors.lm1.volt8=0.03 VDC (VBAT) hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM) hw.sensors.lm1.indicator1=Off (CPU Fan PWM/DC: PWM) hw.sensors.lm1.indicator2=Off (Aux Fan PWM/DC: PWM) hw.sensors.lm1.indicator3=On (CPU Fan PWM/DC: DC) hw.sensors.lm1.percent0=100.00% (Sys Fan PWM Thermal), OK hw.sensors.lm1.percent1=100.00% (CPU Fan PWM Manual), OK hw.sensors.lm1.percent2=100.00% (Aux Fan PWM Manual), OK hw.sensors.lm1.percent3=100.00% (CPU Fan DC SmartIII), OK hw.sensors.lm1.percent4=0.39% (Sys Fan Start-up Value), CRITICAL hw.sensors.lm1.percent5=unknown (CPU Fan Start-up Value) hw.sensors.lm1.percent6=unknown (Aux Fan Start-up Value) hw.sensors.lm1.percent7=unknown (CPU Fan Start-up Value) hw.sensors.lm1.percent8=29.41% (Sys Fan Stop Value), CRITICAL hw.sensors.lm1.percent9=unknown (CPU Fan Stop Value) hw.sensors.lm1.percent10=unknown (Aux Fan Stop Value) hw.sensors.lm1.percent11=unknown (CPU Fan Stop Value)

CONTROLLING PROBLEMS

- Chips are terribly miswired by MB manufacturers
- Often all fans are controlled by a single source
- Sometimes fans cannot be controlled at all
- Theoretically, this stuff can cause bad interactions with BIOS/ACPI/etc; in practice, it tends to work on desktop hardware without noticeable issues
- Some BIOSes have an annoying 'fan error' message

LIVE DEMONSTRATION!

QUESTIONS? COMMENTS?

Constantine A. Murenin コンスタンティン

> cnst <C++@Cns.SU>