Quiet Computing with BSD

Fan control with sysctl hw.sensors

Constantine A. Murenin

University of Waterloo
Waterloo, Ontario, Canada

AsiaBSDCon 2010
Tokyo University of Science, Tokyo, Japan
11/14 March 2010
AGENDA

- Slow fans down, not speed ‘em up!
- Slower speed → less noise → less stress for the user
 - less stress → more motivation
- Concentrated on commonplace desktop hardware
- Winbond Super I/O chips are ubiquitous
- Don’t reinvent the wheel — let the chip do the job
Fan Control Through BIOS

Intel D201GLY2

BIOS → Advanced → Fan Control Conf. → System Fan Control

- Disable
- Enable
Fan Control Through ACPI

- Thermal Zones with Active Cooling objects
- Concept of a Fan Device with a binary state
- Temperature thresholds for Fan Device engagement
- Fan control is still rarely available through ACPI on common desktop hardware
- Not too useful for custom-assembled boxes anyway
Fan Control in Windows

- SpeedFan on Windows
 - Closed-source
 - Can control the fan duty cycle
 - Lacks interfacing for in-chip thermal-based control
Fan Control in Linux

- `lm_sensors`
 - too difficult to configure :p
 - not available on any BSD systems
Several fan-controlling options:
- Manual PWM/DC mode
- Thermal Cruise
- Fan Speed Cruise
- Smart Fan III
How Do Fans Work?

- Generally, fans are rated for +12V (100% duty cycle)
- Most still run reliably at +7V (58% duty cycle)
- Few fans run at lower than +5V (42% duty cycle)
WHAT’S PWM?

- Pulse-width modulation
- Controls the amount of power sent to a load
 - voltage goes from high to low to high very rapidly, with a certain duty cycle
- More efficient when compared with rheostats
 (according to wikipedia)
The duty cycle is controlled through software

Software-based monitoring loop would be required to accommodate reduced noise and excessive heat during high-workload

Settings for each fan output:

- duty cycle
- PWM / DC and PWM frequency (if applicable)
Configure the chip to do the monitoring loop

Settings:

- target temperature and tolerance (e.g. +55°C ±2°C)
- fan start-up (e.g. 60%) and fan stop values (e.g. 40%)
- should fan be turned off completely?
- stop time / step-down time / step-up time
Fan Speed Cruise

- **Settings:**
 - target speed and tolerance
 - step-down time / step-up time
- But what’s the benefit vs. the Manual mode?
SMART FAN III

- An advanced self-adjusting algorithm with variable target temperature and tolerance levels
- See Winbond datasheets for details
OpenBSD sysctl hw.sensors

- The fan-controlling patch released on 2009-05-08 on tech@openbsd.org
 - http://sensors.cnst.su/fanctl/tech@openbsd.org.2009-05-08.fanctl.patch.eml

- The following families of chips are supported:
 - W83627HF (PWM)
 - W83627THF / W83637HF (manual / thermal)
 - W83627EHF / W83627DHG (manual / thermal)
The fan-controlling patch was ported from OpenBSD to DragonFly BSD yesterday.

Available in the `fanctl` branch on `git://leaf.dragonflybsd.org/~cnst/dragonfly.git`

Functionality is currently the same as with OpenBSD.

Will likely be integrated into the `master` branch after more testing.
The Hack

- Integer values passed back to individual sensors through `sysctl` (not `struct sensor` itselfs!)
- In the regular refresh procedure, sensor drivers check if a value has been placed, and update the chip if it has
- Chip readings are always taken from hardware
- Chip behaviour is NOT modified by this patch unless the user specifically requests so via `sysctl`
W83627EHF / W83627DHG

- Appear to be the latest and most popular chips
- percent\{0,1,2,3\} — summary and duty cycle
- temp\{3,4,5,6\} — target temperature
- temp\{7,8,9,10\} — temperature tolerance
- percent\{4,5,6,7\} and \{8,9,10,11\} — Start-up and Stop
- indicator\{0,1,2,3\} — PWM/DC mode switch
hw.sensors.cpu0.temp0=58.00 degC
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp1=51.00 degC (CPU)
hw.sensors.lm1.temp2=14.50 degC (Aux)
hw.sensors.lm1.temp3=38.00 degC (Sys Target)
hw.sensors.lm1.temp4=unknown (CPU Target)
hw.sensors.lm1.temp5=unknown (Aux Target)
hw.sensors.lm1.temp6=unknown (CPU Target)
hw.sensors.lm1.temp7=2.00 degC (Sys Tolerance)
hw.sensors.lm1.temp8=unknown (CPU Tolerance)
hw.sensors.lm1.temp9=unknown (Aux Tolerance)
hw.sensors.lm1.temp10=unknown (CPU Tolerance)
hw.sensors.lm1.fan0=1854 RPM (Sys)
hw.sensors.lm1.volt0=1.34 VDC (VCore)
hw.sensors.lm1.volt1=12.20 VDC (+12V)
hw.sensors.lm1.volt2=3.33 VDC (+3.3V)
hw.sensors.lm1.volt3=3.33 VDC (+3.3V)
hw.sensors.lm1.volt4=-3.95 VDC (-12V)
hw.sensors.lm1.volt5=0.11 VDC
hw.sensors.lm1.volt6=1.62 VDC
hw.sensors.lm1.volt7=3.28 VDC (3.3VSB)
hw.sensors.lm1.volt8=0.03 VDC (VBAT)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.indicator1=Off (CPU Fan PWM/DC: PWM)
hw.sensors.lm1.indicator2=Off (Aux Fan PWM/DC: PWM)
hw.sensors.lm1.indicator3=On (CPU Fan PWM/DC: DC)
hw.sensors.lm1.percent0=100.00% (Sys Fan PWM Thermal), OK
hw.sensors.lm1.percent1=100.00% (CPU Fan PWM Manual), OK
hw.sensors.lm1.percent2=100.00% (Aux Fan PWM Manual), OK
hw.sensors.lm1.percent3=100.00% (CPU Fan DC SmartIII), OK
hw.sensors.lm1.percent4=0.39% (Sys Fan Start-up Value), CRITICAL
hw.sensors.lm1.percent5=unknown (CPU Fan Start-up Value)
hw.sensors.lm1.percent6=unknown (Aux Fan Start-up Value)
hw.sensors.lm1.percent7=unknown (CPU Fan Start-up Value)
hw.sensors.lm1.percent8=29.41% (Sys Fan Stop Value), CRITICAL
hw.sensors.lm1.percent9=unknown (CPU Fan Stop Value)
hw.sensors.lm1.percent10=unknown (Aux Fan Stop Value)
hw.sensors.lm1.percent11=unknown (CPU Fan Stop Value)
CONTROLLING PROBLEMS

- Chips are terribly miswired by MB manufacturers
- Often all fans are controlled by a single source
- Sometimes fans cannot be controlled at all
- Theoretically, this stuff can cause bad interactions with BIOS/ACPI/etc; in practice, it tends to work on desktop hardware without noticeable issues
- Some BIOSes have an annoying ‘fan error’ message
Live Demonstration!
QUESTIONS?
COMMENTS?

Constantine A. Murenin
コンスタンチン

cnst
<C++@Cns.SU>