
Quiet Computing with BSD:
Fan control with sysctl hw.sensors.

Constantine A. Murenin and Raouf Boutaba
University of Waterloo

February 2010

Abstract
We will discuss the topic of fan control and introduce sysctl-based interfacing with the fan-
controlling capabilities of microprocessor system hardware monitors on OpenBSD. The dis-
cussed prototype implementation reduces the noise and power-consumption characteristics
in fans of personal computers, especially of those PCs that are designed from off-the-shelf
components. We further argue that our prototype is easier, robuster and more intuitive to use
compared to solutions available elsewhere.

1. Introduction and Motivation
Power consumption and heat dissipation are gaining
widespread attention in many sectors where personal
computers are deployed. The process of transferring
the heat away from the system is usually accom-
plished with the help of some combination of fans.
However, fans themselves are known to significantly
contribute to the total power consumption of the
system, and also pose an additional problem of emit-
ting a persistent background noise, which, in turn, is
believed to increase the stress levels of those who are
exposed to the noise for prolonged periods of time
and decrease the motivation of the workforce
[Evans.stress].

Big-name system integrators have often been solving
the problem of balancing the noise and thermal char-
acteristics by carefully choosing the fans that are used
to cool the system down, together with employing
some proprietary fan-controlling logic that automati-
cally adjusts the speed of the fans as needed, in order
to achieve the lowest possible noise levels without
compromising the thermal zone requirements of the
system.

However, smaller integrators, whether individual users
or companies assembling personal computers from
off-the-shelf components, have to play it safe, and
oftentimes have to install excessive fans, even if such
fans are not strictly necessary for maintaining reliable
operation of the computer, due to uncertainties re-
garding the power consumption of individual compo-
nents that are used to assemble the system. In es-
sence, this results in unnecessary noise, whereas the
opposite approach of putting fewer than necessary

fans may result in overheating problems when the
computational capabilities of the system are fully util-
ised for an extended time period. Fortunately, not
everything is lost, and many off-the-shelf mother-
boards feature an integrated hardware monitoring
silicon chip that could also allow the user to control
the voltages that are supplied to the fans, thus allow-
ing the user to have more control over the environ-
mental characteristics inside of their PC.

Opponents of fan control may cite various reasons
against decreasing fan-speed and increasing the oper-
ating temperature of the system. A commonly cited
negative factor from such a group is the decrease in
the product life span of certain components, espe-
cially and most importantly Hard Disc Drives
(HDDs). An observation that was perhaps relevant in
the past is now often disputed — a recent study pub-
lished by Google Inc suggests that temperature and
activity levels are much less correlated with drive fail-
ures than previously reported. [Google.FAST07] As
for other components of the system, most of them are
rarely considered as critical and irreplaceable as the
HDDs, and most often they are specifically designed
and advertised to operate in rather extreme tempera-
ture conditions anyway. Proponents and practitioners
of quiet computing can also easily provide the empiri-
cal proof that their systems, if configured for
technically-reasonable upper-level temperatures, can
run stable and reliable for a number of years to come.

In this paper, we will outline some features and prob-
lems with these hardware monitoring chips and with
their use in the commonplace hardware as it relates to
fan control, and we will discuss interfacing options

that allow the end-user to conveniently communicate
and enforce their thermal policies.

2. Related Work
In this section, we will provide an overview of some
related works that allow the user to specify thermal
characteristics of their system.

2.1. Interfacing from the BIOS
Although popular off-the-shelf motherboards have
been physically supporting at least some fan-
controlling features for a considerably long time now,
it has not been until recently that these boards have
been bundled with BIOSes that allowed any kind of
interfacing with the fan-controlling characteristics of
the hardware monitoring chips.

Although most modern BIOSes that are included
with the new motherboards do allow the user to
monitor the temperature, fan and voltage characteris-
tics of the board through the hardware monitoring
chip, it is still not universally common to find boards
that feature adequate level of fan-controlling interfac-
ing from within the BIOS menus: some boards don’t
have any configurable options at all, whereas others
simply have an On / Off switch regarding some brand-
name “Quiet Fan” feature from the manufacturer of
the motherboard.

As a specific example, let us mention a relatively
popular Mini-ITX board that is sold under the Intel
brand: Intel D201GLY2. [Intel.D201GLY2] Our
sample board has been purchased from newegg.com
in December 2007 and originally came with the 0122
BIOS revision dated 2007-08-22. As far as the hard-
ware monitoring and fan controlling goes, the original
BIOS only had the “Hardware Monitoring” menu
selection in its Advanced System Setup tab, with no
options for fan control. However, from the release
notes that accompany later BIOSes, we could see that
“System Fan Control” option has been introduced in a
new “Advanced -> Fan Control Configuration” menu
of the 0129 BIOS revision from 2007-10-08. In order
to test the new option, we have updated the BIOS of
this board to the very latest revision numbered 0149
and dated 2008-12-16. After updating the BIOS and
going into the “Advanced -> Fan Control Configura-
tion” menu, we have been rather disappointed to find
out that the “System Fan Control” is the only option
that has now been implemented, and the only pa-
rameters it can have is “Enabled” or “Disabled”. For
illustration purposes, please refer to Figure I. In fur-
ther sections, we will show that the hardware moni-
toring chip itself has many more fan-controlling op-

tions that may be of specific and reasonable interest
to the user.

Figure I. A sample screenshot of the options that have been pro-
vided in the BIOS revision 0149 dated 2008-12-16 of the Intel

D201GLY2 board, which was one of the boards we have used in
testing our prototype.

2.2. ACPI
ACPI was introduced with the intention of providing
a unified interface for various hardware discovery and
power management functions. [Watanabe.ACPI]
[Intel.ACPI] However, the reality of modern imple-
mentations shows that fan controlling is not one of
the functions that is universally provided by ACPI, at
least not on the common desktop and server off-the-
shelf motherboards.

Laptops, on the other hand, may sometimes feature
more useful details regarding environmental charac-
teristics in their ACPI Differentiated System De-
scription Tables. This may include the ACPI Thermal
Zones (the concept is not specifically unique to lap-
tops, but in practice is much less common to be pre-
sent in the desktop boards). Thermal zones may op-
tionally have a number of Active Cooling objects,
which define temperature thresholds at which Fan
Devices are engaged. Each Fan Device, in this sense,
may be a separate physical device, or may represent a
logical setting of a varying speed on a single fan (or a
set of fans). In practice, however, most of this func-
tionality is still not implemented in the ACPI tables
of available hardware; moreover, it is not even clear if
such functionality may be found useful for general-
purpose off-the-shelf motherboards, where the crea-
tor of the ACPI DSDT (in other words, the mother-
board manufacturer) may not possibly be aware of the
thermal characteristics and active cooling require-
ments of a custom-build box. For this reason, we
would leave further discussion regarding ACPI Ther-
mal Management for a future discourse.

It should be noted, however, that some brand-name
laptops and motherboards do have interesting infor-

2

 Quiet Computing with BSD

mation in their ACPI DSDT that may relate to the
topic of fan control. Notable examples of such sys-
tems include IBM/Lenovo ThinkPad’s, ASUSTeK
motherboards with the AI Booster / ATK0110 feature
and ABIT motherboards with the ABIT uGuru fea-
ture. Let us briefly describe the better known fea-
tures that are provided through these DSDTs.

Out of our interest to environmental monitoring and
fan control, ThinkPad’s provide multiple temperature
sensors (as many as 16 in total), one fan RPM sensor
and one fan-speed control setting. The speed control
setting could be set to ‘automatic’, ‘disengaged’ (mean-
ing, no control is done and fan is run at 100%) and
the ‘manual’ mode. In the manual mode, the setting
can be varied between 0 and 7, where values above
zero seem to guarantee that the fan actually runs
[thinkwiki], meaning that ThinkPads are, essentially,
fool-proof, unlike the manual duty cycle mode in
chips of custom-build systems from the off-the-shelf
components, which are unlikely to make the fans run
under less than 40% of the duty cycle (i.e. under 5 V).

ASUSTeK’s ACPI ASOC ATK0110 virtual device
provides the fan-controlling settings that are similar
or identical to those outlined in the BIOS. Currently,
there is no open-source implementation that supports
the fan-controlling features of the device, so the fan-
control interfacing has to be done through the BIOS.
In general, although the settings on some of these
boards may usually be adequate for many or even
most users, they are still rather limited compared to
the settings that individual hardware monitoring sili-
con chips can provide.

However, the task of exploring in great detail the fan
controlling interfaces specifically to ACPI we will
leave for future work, noting that our current work
should provide a solid ground for any further fan con-
trolling enhancements in drivers other than those
that we will specifically mention. As we discussed
above, currently ACPI does not provide enough fan-
controlling capabilities for it to be interesting in our
study anyways.

2.3. SpeedFan on Windows
SpeedFan is a closed-source utility for the Microsoft
Windows family of operating systems that allows in-
terested users to monitor several environmental char-
acteristics of their personal computers. The utility
provides a GUI, supports many families of hardware
monitoring chipsets, and has an interface for control-
ling the duty cycle of the fans.

For our purposes, however, the utility has a funda-
mental flaw, in that it provides no interfacing for the
automatic in-chip fan controlling. This means that
whatever policy the user specifies in the utility, can be
preserved only whilst the utility is still running, and if
something happens either to the utility or the operat-
ing system, then the thermal characteristics of the
system can no longer be predicted or maintained.

2.4. lm_sensors on Linux
The lm_sensors package is the most popular hardware
monitoring package for the Linux kernel, supporting
a variety of different hardware monitoring chips.
However, the package is known to be difficult to con-
figure even for otherwise experienced system admin-
istrators, and to our knowledge is not available on any
BSD platform.

3. Hardware Monitoring Chips
In this section, we will overview some of the basics
regarding the hardware part of the fan control, as well
as provide an outline of some interesting functionali-
ties that popular hardware monitoring chips imple-
ment.

First, let us start with the fans. Fans in the desktop
computers are usually rated for 12 volts, although
most would still run at 7 volts, where few would run
when voltage is lower than 5 volts. Often, fans require
higher voltage in order to start, as opposed to the
voltage that would ensure that they continue running.
It has also been observed that fans require higher
voltage when their temperature is low, compared to
the same fan when it is warm. If not accounted prop-
erly, this could have negative effects on system stabil-
ity when, for example, the system is cold-started with
a physically limiting fan-controlling solution, such as
Zalman Fan Mate 2, set to the lowest voltage which,
although sufficient for continued operation, may not
be sufficient for a cold start, resulting in the fan mak-
ing the clicking noises without actually ever spinning,
causing a violation of the thermal characteristics of
the box.

Our prototype implementation is concentrated on
the Winbond Super I/O Hardware Monitors, which
account for the bulk majority of the sensor chips that
are available in popular motherboards; we will thus
describe some functionality that is available in the
said chips. Our initial patch implements support for
the following three families of Winbond Super I/O
chips: W83627HF, W83627THF / 37HF and
W83627EHF / DHG.

3

Many of the hardware monitoring chips feature not
only the manual mode, where the duty cycle of the
fans could be changed directly, but also different types
of cruising, in case of Winbond, this includes Thermal
Cruise and Fan Speed Cruise, where the chip, once
programmed with the set target temperature or target
fan speed, internally determines what duty cycle
should the fans be running at in order to satisfy the
set cruising requirements.

For simplicity reasons, we have only implemented the
manual mode and the thermal cruise mode in our ini-
tial prototype implementation. This is also partly due
to the fact that the usefulness of the Fan Speed
Cruise mode is somewhat questionable, as fans vary
between each other, but within each fan it’s not very
likely that the speed will significantly alternate when
the same voltage is given.

3.1. Shortcomings with general-purpose
fan-control software
There is one problem that remains unavoidable with
any general-purpose fan-controlling software: al-
though many motherboards are in fact wired to do fan
control, even if such features are not specifically ad-
vertised in motherboards’ documentation or are avail-
able in the BIOS menus, some cheaper boards that do
feature chips that support fan controlling simply do
not have the chips wired appropriately with the fan
connector headers, such that any attempts to control
the speed of the fans from within the hardware moni-
toring chip may not be successful.

To save costs yet allow the user to still perform some
fan control, some boards often feature such wiring
that all the fan headers are wired and controlled
through a single pin and setting of the fan-controlling
chip, even if the chip itself does offer individual pins
and controlling settings for more than a single fan.

Unfortunately, there is no known general approach
that can reliably detect these situations in due course
and with reasonably simple and straightforward logic,
so the task of determining the exact peculiarities in
supported fan-control functionalities of a mainboard
in question are left for the end user to establish on
their own.

4. OpenBSD sysctl hw.sensors Fan
Control
In this section, we will briefly describe the general
notions of the OpenBSD’s sysctl hardware sensors
framework [Murenin.IEEE07] [Murenin.Asia09], and
then provide some suggestions on how it can be al-

tered such as to provide interfacing to the fan-
controlling functionalities of the hardware monitor-
ing chips.

The underlying mechanism that is used to transport
the datastructures of the hardware sensors framework
in OpenBSD is the sysctl interface. Currently, the
framework is implemented in such a way that it al-
lows only the drivers to export the data into the sysctl
tree, but not get any feedback back from the user.
However, the changes that the framework requires in
order to support the functionality of passing modified
sensor values back from the userland to the kernel are
rather minimal, as we will explore in the following
paragraphs.

One of the ways to accomplish the required function-
ality is to allow the userland to simply pass the modi-
fied sensor data for those sensors which the drivers
specifically identify as modifiable. To avoid overengi-
neering, we can also make an assumption that only an
integer value should have the possibility of being
modified and passed back to the driver, as opposed to
the whole sensor structure. With these assumptions,
the required modifications for the framework are very
straightforward and minimal, as one could see from
the patch that we have released. [Murenin.tech09]
The changes in the framework were made to
/ s ys / s ys / s e n s o r s . h , / s ys / k e r n / k e r n _ s ys c t l . c and
sbin/sysctl/sysctl.c, and we will briefly describe the
changes below.

4.1. New upvalue field and new flags
The /sys/sys/sensors.h, which is the header file with the
definitions of the structures required for the frame-
work, hereby sees the introduction of the upvalue
field inside the struct ksensor structure, as well as two
new flags, SENSOR_FCONTROLLABLE and SEN-
SOR_FNEWVALUE.

Note that we have introduced the new upvalue field
only into the kernel version of the sensor structure —
it was deemed unnecessary to introduce the field for
the userland version of the structure, since upvalue is
only intended as the input for the drivers, and then
after it is consumed by the driver, the value that the
user has set would not be something that the user
should be interested in monitoring. The primary rea-
son for allowing such a discrepancy between the ker-
nel’s struct ksensor and userland’s struct sensor is that,
unless omitted from the userland, the introduction of
a new field will cause sizeof(struct sensor) to grow, and
would thus break the ABI, where the existing C/C++
sysctl(3) applications that are trying to get the struct
sensor structure would not allocate large enough buff-

4

 Quiet Computing with BSD

ers for the sysctl(3) to copy out the structure from the
kernel to the userland, returning an [ENOMEM] er-
ror message instead.

The contro(able flag, when set by the driver, signifies
that the sensor is a read/write sensor. After a new
value is provided by the user, it is stored into the
upvalue field, and the newvalue flag is set, which then
remains set until the driver’s periodic refresh proce-
dure, which loops through all the sensors to make the
necessary updates, consumes the sensor’s upvalue and
clears the flag.

It deservers mentioning that the way we have de-
signed our fan controlling prototype is such that the
driver never modifies any fan-controlling settings in-
side the chips unless the user explicitly requests any
such changes. This has several benefits, one of which
is that users should not feel intimidated that the mere
fact of applying the patch and rebooting the system is
going to do any damage to their system. In fact, there
may be situations where the user might simply want
to check on the policies the motherboard manufac-
turer has preloaded the chips with, and as our patch
not only allows one to modify the existing fan-
controlling behaviour, but also to monitor the cur-
rently applicable settings, or, at the very least, the
duty cycle settings that the fans are experiencing, the
user does indeed has such an option.

4.2. Sensor types
The next design decision that we would like to discuss
is that of sensor types. Now that the drivers could de-
clare that certain sensors could have an upvalue field
that could be modified and passed back into the
driver, the question regarding sensor types comes to
mind. On the one hand, any new sensor type would
break the ABI and, possibly, API of existing utilities,
whereas if the existing sensor types are reused, the
interfacing may seem to look a bit too generic and
somewhat less user-friendly.

For example, if we reuse the temp type to specify tar-
get temperatures, then those target temperature set-
ting sensors would have to be numbered in the same
namespace as those sensors that report actual tem-
perature readings, e.g. temp0 may be the actual tem-
perature sensor, whereas temp3 would be the (corre-
sponding or not) read/write target temperature set-
ting sensor.

One problem that we have found with the approach
of reusing the existing sensor types is that not all
types appear to be represented in the current version
of sensors.h. For example, one of the settings that we

might want the user to be able to modify is the stop,
step-down and step-up time, expressed in seconds,
and although there is a sensor type timedelta, ex-
pressed as a time fraction, it appears that the current
use exclusively suggests that the value of such time-
delta sensors should show the difference between the
local wall clock and the wall clock of some external
and more accurate timesource. [Balmer.Asia07]
[Balmer.Euro07] Therefore, one must be careful in
reuse of such sensor types, as it may inadvertently
confuse tools like ntpd, creating a situation where it
could be using such a sensor to adjust the drift of the
local clock for very unintended results.

Although introducing new sensor types is very
straightforward (a matter of defining each type in two
places inside the /sys/sys/sensors.h, supporting the
printout in sysctl, sensorsd, systat etc, and changing
the respective sensors in the drivers to the new type),
the approach that we have taken thus far in our pro-
totype implementation is to delay any such introduc-
tion, allowing us to make an interesting observation
that we have managed to implement the fan-
controlling interfacing via sysctl hw.sensors tree with-
out breaking neither the existing API nor even the
ABI, with the new functionality introduced exclu-
sively on top, but not in place of, any parts of the ex-
isting framework.

4.3. Dynamic sensor descriptions
Settings for certain writable sensors may sometimes
be rather complicated; for example, the duty cycle of
fans may be controlled through several ways, includ-
ing one manual and several automatic modes. In or-
der to show these settings, we have conveniently used
the description field of relevant sensors, where, de-
pending on the data in certain registers, we would
update the string describing an individual sensor with
the information regarding some complex settings of
the said sensor.

4.4. The lm(4) driver
In our prototype, we have implemented fan-
controlling support for several chips that are other-
wise supported by OpenBSD’s lm(4) driver. We will
briefly describe what went on in our implementation.

First, as already mentioned, the driver doesn’t modify
the fan-controlling behaviour unless the user specifi-
cally requests such modifications via the sysctl inter-
facing.

Then, we have tried to make the interfacing as intui-
tive as possible. For example, when the user tries to
modify the duty cycle of the fans directly through the

5

percent type sensors, the respective fan control set-
tings automatically switch into the manual mode;
same happens when the user tries to change the target
temperature of a given fan-controlling pin.

Table I provides an example summary of what sensors
were newly added to lm(4), although the exact sensors
will differ with each supported family. In the example
below, you can see that the chips themselves in this
particular family can independently control 4 fans
(which is not to say that the motherboard manufac-
turer has necessarily wired everything to make such
independent control possible). Note that all of these
new sensors are both readable and writable.

Sensor Usage
percent{0,1,2,3} summary and dury cycle
temp{3,4,5,6} target temperature
temp{7,8,9,10} temperature tolerance
percent{4,5,6,7} Start-up duty cycle
percent{8,9,10,11} Stop duty cycle
indicator{0,1,2,3} PWM/DC switch

Table I. Newly added sensors for the W83627EHF / DHG family.

5. Demonstration
We will hereby demonstrate some functionalities of
our prototype, together with the relevant commen-
tary.

Below is the output from a W83627DHG chip on an
Intel D201GLY2 box with one small system fan. Val-
ues that are not applicable to the current operational
mode are automatically marked as ‘unknown’ in sysctl.

% dmesg | fgrep W83627DHG
wbsio0 at isa0 port 0x4e/2: W83627DHG rev 0x25
lm1 at wbsio0 port 0x290/8: W83627DHG

% sysctl hw.sensors
hw.sensors.cpu0.temp0=58.00 degC
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp1=51.00 degC (CPU)
hw.sensors.lm1.temp2=14.50 degC (Aux)
hw.sensors.lm1.temp3=38.00 degC (Sys Target)
hw.sensors.lm1.temp4=unknown (CPU Target)
hw.sensors.lm1.temp5=unknown (Aux Target)
hw.sensors.lm1.temp6=unknown (CPU Target)
hw.sensors.lm1.temp7=2.00 degC (Sys Tolerance)
hw.sensors.lm1.temp8=unknown (CPU Tolerance)
hw.sensors.lm1.temp9=unknown (Aux Tolerance)
hw.sensors.lm1.temp10=unknown (CPU Tolerance)
hw.sensors.lm1.fan0=1854 RPM (Sys)
hw.sensors.lm1.volt0=1.34 VDC (VCore)
hw.sensors.lm1.volt1=12.20 VDC (+12V)
hw.sensors.lm1.volt2=3.33 VDC (+3.3V)
hw.sensors.lm1.volt3=3.33 VDC (+3.3V)
hw.sensors.lm1.volt4=-3.95 VDC (-12V)
hw.sensors.lm1.volt5=0.11 VDC
hw.sensors.lm1.volt6=1.62 VDC
hw.sensors.lm1.volt7=3.28 VDC (3.3VSB)
hw.sensors.lm1.volt8=0.03 VDC (VBAT)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.indicator1=Off (CPU Fan PWM/DC: PWM)
hw.sensors.lm1.indicator2=Off (Aux Fan PWM/DC: PWM)

hw.sensors.lm1.indicator3=On (CPU Fan PWM/DC: DC)
hw.sensors.lm1.percent0=100.00% (Sys Fan PWM Thermal), OK
hw.sensors.lm1.percent1=100.00% (CPU Fan PWM Manual), OK
hw.sensors.lm1.percent2=100.00% (Aux Fan PWM Manual), OK
hw.sensors.lm1.percent3=100.00% (CPU Fan DC SmartIII), OK
hw.sensors.lm1.percent4=0.39% (Sys Fan Start-up Value), CRITICAL
hw.sensors.lm1.percent5=unknown (CPU Fan Start-up Value)
hw.sensors.lm1.percent6=unknown (Aux Fan Start-up Value)
hw.sensors.lm1.percent7=unknown (CPU Fan Start-up Value)
hw.sensors.lm1.percent8=29.41% (Sys Fan Stop Value), CRITICAL
hw.sensors.lm1.percent9=unknown (CPU Fan Stop Value)
hw.sensors.lm1.percent10=unknown (Aux Fan Stop Value)
hw.sensors.lm1.percent11=unknown (CPU Fan Stop Value)

We alter the target temperature value for the Thermal
Cruise mode, and note that the percent0 value is go-
ing down.

% sudo sysctl hw.sensors.lm1.temp3=50
hw.sensors.lm1.temp3=38.00 degC {updating} (Sys Target)

% sysctl hw.sensors | fgrep Sys
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp3=50.00 degC (Sys Target)
hw.sensors.lm1.temp7=2.00 degC (Sys Tolerance)
hw.sensors.lm1.fan0=1739 RPM (Sys)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.percent0=29.41% (Sys Fan PWM Thermal), CRITICAL
hw.sensors.lm1.percent4=0.39% (Sys Fan Start-up Value), CRITICAL
hw.sensors.lm1.percent8=29.41% (Sys Fan Stop Value), CRITICAL

Our D201GLY2 board is deemed abnormal, because
the fan doesn't stop much until the duty cycle is al-
most zero. (Or, perhaps, the issue lies with the fan of
the enclosure where the board resides.) So the result
is likely to be entirely different on a different board;
the status field indicates the likelihood that the fan is
not going to run on a given duty cycle.

% sudo sysctl hw.sensors.lm1.percent8=10
hw.sensors.lm1.percent8=29.41% {updating} (Sys Fan Stop Value), CRITICAL

% sysctl hw.sensors | fgrep Sys
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp3=50.00 degC (Sys Target)
hw.sensors.lm1.temp7=2.00 degC (Sys Tolerance)
hw.sensors.lm1.fan0=1240 RPM (Sys)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.percent0=9.80% (Sys Fan PWM Thermal), CRITICAL
hw.sensors.lm1.percent4=0.39% (Sys Fan Start-up Value), CRITICAL
hw.sensors.lm1.percent8=9.80% (Sys Fan Stop Value), CRITICAL

Now let's go into the Manual mode. Note that the
description of the percent0 sensor will change to in-
dicate that the Manual mode becomes active, and
that the value goes gradually towards the desired value
over some period of time.

% sudo sysctl hw.sensors.lm1.percent0=6
hw.sensors.lm1.percent0=9.80% {updating} (Sys Fan PWM Thermal), CRITICAL

% sysctl hw.sensors | fgrep Sys
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp3=unknown (Sys Target)
hw.sensors.lm1.temp7=unknown (Sys Tolerance)
hw.sensors.lm1.fan0=1240 RPM (Sys)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.percent0=9.80% (Sys Fan PWM Manual), CRITICAL
hw.sensors.lm1.percent4=unknown (Sys Fan Start-up Value)
hw.sensors.lm1.percent8=unknown (Sys Fan Stop Value)

% sysctl hw.sensors | fgrep Sys
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp3=unknown (Sys Target)
hw.sensors.lm1.temp7=unknown (Sys Tolerance)
hw.sensors.lm1.fan0=781 RPM (Sys)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.percent0=5.88% (Sys Fan PWM Manual), CRITICAL
hw.sensors.lm1.percent4=unknown (Sys Fan Start-up Value)
hw.sensors.lm1.percent8=unknown (Sys Fan Stop Value)

6

 Quiet Computing with BSD

We would like to emphasise that the driver only im-
plements reading and writing to the registers of the
chip, e.g. the Thermal Cruise mode is still performed
by the chip itself. Fan Cruise mode and the Smart
Fan III modes are not supported, although one can
still monitor their effects via the percent{0,1,2,3} sen-
sors.

6. Conclusion
We have described some hardware monitoring and
fan-controlling functionalities of modern chips and
provided a prototype that allows users to conven-
iently interface with the fan-controlling functionali-
ties of their commonplace hardware.

7. Future Projects
Several future projects remain possible in regards to
the sensors framework and fan control. In this sec-
tion, we will try to identify some of them. Some of
these identified projects may be of immediate interest
to the actual users of the described systems, whereas
others may be of more interest to the researchers of
the subject.

7.1. Even easier fan control
Fan-speed controlling was discussed in this paper, and
a prototype has been provided, however, further re-
search is possible in several distinct directions.

In general, as we have shown, OpenBSD’s sensors
framework requires very little amount of modification
to provide an interface for the ability to conveniently
pass values from sysctl(8) back into the driver, such
that the driver, in turn, could pass such values down
to the chip, for the chip to modify the voltage of
some fan headers in a certain predetermined fashion.

However, different generations of chips have different
logic regarding fan control; many chips of recent gen-
erations have multiple temperature levels at which
different fan speeds could be sought; certain tempera-
ture sensors could be specified to affect decisions re-
garding the speed of certain fans etc. Concerns for
simplicity extinction are amplified by the fact that the
majority of motherboards are miswired as far as
hardware monitoring datasheets are concerned, since
many modern hardware monitoring chips oftentimes
provide way much more functionality in regards to
fan controlling than the motherboard manufacturer is
usually interested in supporting and advertising in its
products for its endusers. Therefore, a complete,
flexible and round patch for supporting fan control-
l ing functionality might be a long way from

OpenBSD’s philosophy of being a system where a
great deal of effort is paid towards the simplicity and
generality of its feature set.

Due to these reasons, it is unclear if any general-
purpose fan-controlling prototype will ever be inte-
grated into the main release of the OpenBSD system,
so some further research is warranted.

7.2. Possible race conditions between user
software and the BIOS
It has also been speculated that user-initiated inter-
vention with the fan-controlling functionality of the
chip may cause undesirable consequences to the sta-
bility of the system as a result of certain conflicts with
the system management code of the BIOS. Although
the concern has some grounds, in our experience no
undesirable interactions were found as of yet in re-
gards to the matter. Future work may examine as-
sembly code and, perhaps, specifications of various
hardware components to determine if the concerns
have some more valid grounds.

Motherboard manufacturers may wish to provide fan-
controlling specifications through custom ACPI de-
vices, whereby the specifications would be more de-
finitive and less likely to harm the stability and design
of the system, at the same time ensuring that each
BIOS contains the relevant information of which pins
of the chip are actually utilised in the design of the
motherboard.

7.3. Fan controlling through sensorsd
Future work may also be done in regards to a simpli-
fied language for specifying various relationships for
fan control, and the language may feature fall backs
for the sensorsd hardware monitoring daemon for
those chips that cannot do the monitoring loop by
themselves.

References
[Balmer.Asia07] Marc Balmer. “Support for Radio Clocks in
OpenBSD”. In: AsiaBSDCon 2007 Proceedings. 8–11 March
2007, Tokyo, Japan.
http://www.openbsd.org/papers/radio-clocks-asiabsdcon07.pdf

[Balmer.Euro07] Marc Balmer. “Supporting Radio Clocks in
OpenBSD”. On: EuroBSDCon 2007. 12–15 September 2007,
Copenhagen, Denmark. Slides:
http://www.openbsd.org/papers/eurobsdcon07/mbalmer-radio_clocks.pdf

[Evans.stress] Gary W. Evans and Dana Johnson. “Stress and
Open-Office Noise”. Journal of Applied Psychology, vol. 85,
no. 5, pp. 779–783. October 2000.
doi:10.1037/0021-9010.85.5.779

7

[Google.FAST07] Eduardo Pinheiro, Wolf-Dietrich Weber
and Luiz Andre Barroso. “Failure Trends in a Large Disk
Drive Population”. Proceedings of the 5th USENIX Con-
ference on File and Storage Technologies (FAST’07). Febru-
ary 2007, San Jose, CA, USA.
http://labs.google.com/papers/disk_failures.pdf

[Intel.ACPI] —. “Advanced Configuration and Power Inter-
face”. Hewlett-Packard, Intel, Microsoft, Phoenix and To-
shiba. http://www.acpi.info/

[Intel.acpica] —. “ACPI Component Architecture”. Intel.
http://www.acpica.org/

[Intel.D201GLY2] —. “Intel® Desktop Board D201GLY2 /
D201GLY2A”. Intel.
http://www.intel.com/products/motherboard/D201GLY2/configs.htm

[Murenin.BSc06] Constantine A. Murenin, B. Sc. (Hons)
Final Year Project Main Report: “Microprocessor system
hardware monitors. Interfacing on OpenBSD with
sysctl(8).” Faculty of Computing Sciences and Engineering,
De Montfort University, Leicester, UK, May 2006.

[Murenin.TOJ06] Constantine A. Murenin. “New two-level
sensor API”. The OpenBSD Journal. 30 December 2006.
http://undeadly.org/cgi?action=article&sid=20061230235005

[Murenin.IEEE07] Constantine A. Murenin. “Generalised
Interfacing with Microprocessor System Hardware
Monitors”. In: Proceedings of 2007 IEEE International
Conference on Networking, Sensing and Control. 15–17
April 2007, London, United Kingdom. IEEE ICNSC 2007,
pp. 901—906. doi:10.1109/ICNSC.2007.372901

[Murenin.Asia09] Constantine A. Murenin and Raouf
Boutaba. “OpenBSD Hardware Sensors Framework”. In:
AsiaBSDCon 2009 Proceedings. 12–15 March 2009, Tokyo
University of Science, Tokyo, Japan.
http://www.openbsd.org/papers/asiabsdcon2009-sensors-paper.pdf

[Murenin.tech09] Constantine A. Murenin. “sysctl
hw.sensors lm(4) fan-controlling prototype/hack”.
tech@openbsd.org mailing list. 8 May 2009.

[thinkwiki] —. “How to control fan speed”. ThinkWiki.
http://www.thinkwiki.org/wiki/How_to_control_fan_speed

[Watanabe.ACPI] Takanori Watanabe. “ACPI implementa-
tion on FreeBSD”. 2002 USENIX Annual Technical Con-
ference, FREENIX Track. 10–15 June 2002, Monterey, CA,
USA.

Biography
Constantine A. Murenin a.k.a. cnst is an MMath
graduate student at the David R. Cheriton School of
Computer Science at the University of Waterloo
(CA). Prior to his graduate appointment, Constan-
tine attended and subsequently graduated from East
Carolina University (US) and De Montfort University
(UK), receiving two Bachelor of Science degrees in
Computer Science, with Honors and Honours, in
2007 and 2006, respectively. Active member of mul-
tiple open-source projects and a Google Summer of
Code Alumnus, Constantine's interests range from
standards compliance and usability at all levels, to
quiet computing and hardware monitoring. You can
contact him via email at <C++@Cns.SU>.

Raouf Boutaba received the MSc and PhD degrees
in Computer Science from the University Pierre and
Marie Curie, Paris, France, in 1990 and 1994, respec-
tively. He is currently a Professor of Computer Sci-
ence at the University of Waterloo. His research in-
terests include network, resource and service man-
agement in wired and wireless networks. He is the
founder and Editor-in-Chief of the IEEE Transactions
on Network and Service Management and is on the
editorial boards of several other journals. He is cur-
rently a distinguished lecturer of the IEEE Commu-
nications Society, the chairman of the IEEE Technical
Committee on Information Infrastructure and the
Director of the ComSoc Related Societies Board. He
has received several best paper awards and other rec-
ognitions such as the Premier’s Research Excellence
Award.

8

 Quiet Computing with BSD

