
Generalised Interfacing with Microprocessor System Hardware Monitors

Constantine A. Murenin
Department of Computer Science, East Carolina University, Greenville, NC, USA

Faculty of Computing Sciences and Engineering, De Montfort University, Leicester, UK

Abstract

In this paper, we will discuss the possibilities,
functionalities and limitations of Microprocessor System
Hardware Monitors. We will provide a comparison survey
of their main functions, depict some weaknesses and give an
overview of what possibilities they provide for the end-user.

We will also discuss OpenBSD’s sysctl Hardware
Sensors framework, and describe our recent contributions to
the addressing scheme and underpinnings of the framework.

1. Background

Power consumption of personal computers grows every
year along with their computational capabilities. Recently
produced microprocessors consume at times hundreds watts
of power, and thus require massive cooling resources. Most
often than not, fans are used as a low-cost solution that
provides adequate cooling in low- and medium-cost personal
computers, whilst water-cooling is used in high-end systems.
However, fans have several problems associated with them,
such as noise when run at full speed and, once again, they
themselves consume more electricity.

Processor manufacturers have come to realise that power
consumption of modern processors is a major drawback
from creating high-end personal systems with acceptable
power-drawn, so several power-saving technologies were
deployed, such as deactivating some microprocessor units or
modules whilst the processor is in the idle loop. The
adoption of these features means that fans may be turned off
while the overall system activity is low, and turned to full
speed when the system performs some processor-intensive
task.

It is in the interest of the user to be able to control the
speed at which fans are running in order to utilise the
power-saving features of the processor and minimise the
overall noise of the system. Practically, this may be proven
extremely useful in situations where one is running an
OpenBSD-based firewall or fileserver system in the home
setting, where the overall processor activity of the server is
going to be very minimal, whereas the noise of the system is
of a major concern due to the desired 24hr operation of the
server within the living room area. Desktop usage of
hardware monitoring and controlling software is also of
value, since the amount of processor idling time prevails in
most desktop applications and minimised noise is of
particular value. In the server arena, the monitoring part

Public domain.

comes very handy, such that administrators can be sure that
their systems are running in accordance with manufacturers’
specifications and guidelines.

Vast majority of motherboards in use today already
integrate chips that allow temperature, voltage and fan speed
monitoring, and many newer motherboards have the
circuitry for supplying fans with user-specified voltage so
that the user can control fan speed entirely from software.
However, hardware manufacturers do not always provide
any end-user utilities to do the aforementioned monitoring
and controlling, and when it comes to open-source software,
the community is expected to come up with a software
solution on their own. This works well as long as chip
manufacturers release appropriate register documentation for
their hardware. In the presence of such documentation,
qualified software developers can write drivers for the
operating system of their choice, and these drivers are
usually shortly integrated into the official distribution of the
operating system for which they were written.

2. Hardware review

Hardware monitors usually come either in a distinct chip
package or a as a part of a Super I/O solution. Sensor
readings and fan-controlling capabilities may be accessed
through different busses, mostly I2C or SMBus, ISA or LPC,
or PCI.

I2C and SMBus are two-wire busses, which are
essentially compatible with each other. I2C is an acronym for
Inter Integrated Circuit, a bus developed by Philips
Semiconductor with version 1.0 published in 1992 [1],
whilst SMBus is an acronym for System Management Bus, a
bus defined by Intel in 1995.

LPC stands for Low Pin Count Interface Specification,
which is a bus authored by Intel that is hardware and
software compatible with the existing ISA devices and
applications. [2]

Popular hardware monitoring chips often feature both I2C
and ISA bus access, for example National Semiconductor
LM78 [3] or Winbond W83627HF [4]. In such case,
accessing sensors over ISA bus is preferred over I2C, with
ISA being the faster of the two. From the practical
standpoint, however, unless special care is taken, two
instances of the same device may be attached to the system
at once — one on I2C, the other one on ISA. Whilst this
usually does not create any resource conflicts,
implementations might detach the instance of the driver from
the I2C bus in favour of ISA bus access to avoid any user
confusion of two distinct devices being attached with
identical sensor readings. (In fact, this is what OpenBSD’s

Proceedings of the 2007 IEEE International Conference on

Networking, Sensing and Control, London, UK, 15-17 April 2007

TuesE04

1-4244-1076-2/07/$25.00 ©2007 IEEE 901

lm(4) driver does — when the hardware monitoring chip is
detected on the ISA bus, it is automatically attached on ISA
and detached from the I2C bus.)

It is not less common to find hardware monitors that only
have I2C interface — this is usually the case with simple
chips that only have one or two temperature sensors. On the
other hand, Super I/O chipsets usually offer ISA/LPC
interface as they already use ISA/LPC for the purpose of
connecting serial, parallel, infrared and PS/2 ports.

Hardware monitors that are accessible through PCI
interface are usually enclosed in South Bridges, such as VIA
VT82C686A “Super South” South Bridge. At this time, only
VIA is known to have produced this kind of “Super South”
South Bridge with system-wide hardware monitoring
capabilities.

2.1. Hardware documentation
In order to write an effective driver for a hardware

monitoring chip, or any chip for that matter, the
manufacturer of the chip has to release appropriate
documentation that would summarise main functions of the
chip and provide some insightful information on how the
chip can be talked-to to perform desired operations.

Unfortunately, in recent years in the computer industry it
became very difficult to acquire appropriate documentation
that is required for programming the chips. According to
Theo de Raadt, the founder and main software-architect of
the OpenBSD project, it is the large American companies
which usually resist from giving away their documentation
that is required for programming the chips. [5] Datasheet
unavailability is a major obstacle for open-source software,
because it means that driver developers have to reverse-
engineer the devices and their interfaces in order to create
working drivers.

Fortunately, most popular hardware monitoring chip
manufacturers do provide the datasheets for programming
their hardware. However, in the next subsection, we will
discuss some problems that driver developers may have to
face when interpreting provided documentation.

2.2. Datasheet shortcomings
In this section, we will provide a brief survey of common

problems that may be encountered by driver developers in
writing drivers for most popular hardware monitoring chips.
Some problems mentioned in this section can equally apply
to the end user as well, for example, what expectations
should the user have for hardware monitors in general?

2.2.1. Voltage Input Ambiguity
Manufacturers of most popular hardware monitoring

chips only provide recommendations of which leads should
be connected to which voltage sensor inputs of the hardware
monitoring chip. In other words, they do not enforce any
particular connections for Voltage Sensor ‘VIN’ connectors
in their documentation.

From the point of view of the motherboard manufacturer,
this is an excellent opportunity to use provided sensors in the
most efficient way. For example, the motherboard
manufacturer of a server may wish to put several hardware

monitoring chips inside their motherboard, and utilise their
voltage sensor inputs in such a way as to provide the
maximum flexibility in monitoring, say, dual power-supplies
that provide uninterrupted power to the motherboard.

However, when one thinks more about this situation, one
realises that most power supplies in the desktop market
today are standard ATX power supplies, which have the very
same connectors from motherboard to motherboard. They
also come in standard voltage configurations, for example,
they all have a +3.3V lead, +5V regular lead, +5V lead for
‘stand-by’ use, several +12V leads etc. [6] I.e. the hardware
monitoring chip manufacturer should already have a pretty
good idea of where their Super I/O chips will be used in the
vast majority of cases.

Nevertheless, because chip manufacturers still provide
only recommendations of which voltages should be
connected to which voltage sensor inputs, we have a
problem to tackle. The problem cannot be seen until you
realise how voltage sensors in the monitoring chip work.

Voltage sensors work as follows: each sensor has a limit
of the maximum voltage that it can detect and the maximum
voltage it can withstand. Most older chips have the
maximum voltage detection level at around 4.0 volts, whilst
many newer chips have it at around 2.0 volts. This maximum
voltage detection level will only decrease over time, as the
semiconductor industry manufactures integrated circuits
using a smaller and smaller chip manufacturing process year
after year, which in turn makes chips consume less
electricity, and moreover makes it impossible to transfer
high voltage over such small electrical parts inside the chip.

Therefore, before the voltage can be connected to the
monitoring chip, it must be downscaled to no more than the
specified maximum detection level. This is done with the
help of resistors.

After the voltage is transformed to the appropriate scale
and is connected to the sensor, the sensor usually has 8-bit,
sometimes 10-bit, scale under which it can report the voltage
it senses.

In other words, the detected value from the sensor is
usually stored in one byte, and assumptions are made on
which resistors were used in order to bring the voltage to the
desired level. The resistor factors can be thought of as the
conversion table, and because the chip manufacturer,
essentially, does not require the motherboard manufacturer
to connect specific leads from the power supply to specific
sensor inputs of the monitoring chip using specific
resistors — there is no guarantee that the value we think is
+12V is indeed connected to the +12V line of the power
supply. To illustrate this in a visual example, let us consider
that we read an 8-bit value of 0xcb from a voltage sensor on
a very common Winbond Super I/O chip — W83627HF:

code result description

0xcb 203 raw value

203 * 0.016V 3.24V voltage on sensor

3.24V * 1.00 3.24V +3.3V scale
3.24V * 1.68 5.44V +5V scale
3.24V * 3.80 12.31V +12V scale

Sensors on the chip in this example only allow for a
maximum of around 4.0 volts to be detected. To account for

902

this, if one wants to measure +12V, one must put some
resistors in place that will safely and surely lower the voltage
to being on around 3.0 — 3.3 volt scale.

To summarise, it is up to the manufacturer of the end-
product (e.g. motherboard) to ensure that appropriate
resistors are used and the leads are connected as
recommended. In turn, when software reads a voltage data
from the chip, it multiplies the value by artificial resistor
factor to align the raw value against the scale. As a result of
these multiplications, we usually end up with the value that
we already expect from that particular sensor, i.e. 3.24V,
5.44V or 12.31V reading for a 3.33V, 5V or 12V sensor.
Unfortunately, there is no way to verify that these readings
are indeed what we think they are — the device driver has
no way of knowing for sure that the end-product
manufacturer didn’t switch 5V and 12V circuitry, so if your
12V reading is off, it’s not necessarily that your +12V line of
power supply needs some attention, it might be the case that
you think that it’s a +12V line, whereas in fact it is a +5V or
+3.33V line.

2.2.2. LM78 compliance
Unnecessary backwards compliance with LM78-chips

was implemented in many Winbond Super I/O chips, which
made Winbond chips look quite dodgy from the software
implementation standpoint.
Temperature

One obvious example of LM78 compliance is the
temperature reading register. In LM78 there is only one
temperature reading sensor that can be accessed at register
0x27, and registers ‘before’ and ‘after’ are used for voltage
and fan sensors respectfully. Winbond wanted to keep the
compliance, and thus decided to put the second and third
temperature readings in register 0x50 ‘bank 1’ and ‘bank 2’.
Fan divisor bits

A better example of the shortcomings of legacy
compliance comes with fan divisors. Remember, we usually
have only 1 byte for the raw sensor data. With fans varying
in speed from 200 rpm to 8000 rpm, we must detect a broad
range of values. To accomplish this, LM78 stores two-bit
divisors for two out of three fans, with the third fan having a
constant divisor.

However, engineers of W83627HF decided that they
wanted to have 3 bits for divisors and adjustable divisors for
all three fans (not just for two as in LM78), but still keep the
compatibility with LM78 implementations. Therefore, in
W83627HF, the most significant bit for each divisor is
stored in a register entirely different from the remaining two
least significant bits for the two legacy divisors. This, in
turn, creates additional implementation challenges by
requiring the device driver to scan several entirely different
registers for divisor bits, and then to assemble these divisor
bits into a single divisor for each fan.

The problem with fan divisors splattered across multiple
registers is amplified further by the fact that hardware
monitoring chips do not automatically modify fan divisors to
accommodate slower fans, i.e. unless divisor bits are
modified by software, no fans with speeds slower than 2657
RPM may be detected with the default divisor — 2¹.

Voltage
It must be noted that this backwards compatibility with

LM78 is rendered even more useless due to Winbond’s
recommendation to use different resistors with W83627HF
than the ones that were recommended by National Semi-
conductor for use with LM78. (E.g.: +12V line suggested
resistors in LM78 are 30 and 10 kilo ohm, which make up a
(30+10)/10 = 4.0 factor over the input, whereas W83627HF
recommended resistors are 28 and 10 kilo ohm, which make
up a (28+10)/10 = 3.8 factor over input.) Therefore, whilst
the logical meaning of the registers is compatible, i.e.
register 0x24 provides the reading for +12V in both LM78
and W83627HF, their actual values unnecessarily differ due
to the different resistors being proposed and utilised.

2.2.3. 0—4.096V paradox
Many Winbond datasheets talk about 4.096 V being the

maximum detectable voltage, with the excess to be removed
by resistors. Quote:

The maximum input voltage of the analog pin is
4.096V because the 8-bit ADC has a 16mv LSB.
Really, the application of the PC monitoring would
most often be connected to power suppliers.

Winbond datasheets, original spelling preserved
Specifically, they say that sensors can measure from 0V

to 4.096V with 8-bit raw data being encoded in 0.016V
units. However, it remains to be seen how 4.096V could be
measured in one byte using 16mV LSB:
 0 * 0.016 V = 0.000 V
 ...
 255 * 0.016 V = 4.080 V

2.3. Light at the end of the tunnel
It must be noted that not every chip is accompanied by

datasheets and recommendations that are such unaccountable
for development of generalised software with hardware
monitoring support that can be trusted. One exemplar is
Standard Microsystems Corporation (SMSC) SCH5017
Super I/O chip, which is described to have internal resistors,
such that it automatically scales sensed voltage in such a
way that the correct value refers to 3/4th of the scale or 192
decimal in 8-bit reading (SCH5017, page 200 out of 362).
[7] This allows the device driver to have a simple register-
voltage relationship table for conversion purposes, and the
very same table can also be used for descriptive purposes,
leaving very little room for any kind of error.

3. Software review

In this section, we will give a brief overview of software
packages that exist for the purpose of monitoring and/or
controlling various environmental characteristics of a
computer. Where possible, we will compare the
effectiveness of the software against the OpenBSD’s
sysctl(8) approach at hardware monitoring.

3.1. SpeedFan
SpeedFan is a closed-source freeware win32 software

developed by one individual in Italy. It provides support for
most hardware monitoring devices, and it can access them

903

on PCI, ISA and SMBus buses. (As mentioned previously,
LCP-devices are software compatible with ISA, and I2C and
SMBus are also essentially compatible with each other.)

Other than providing access to the standard hardware
monitors, SpeedFan also allows one to access the
information about Hard Disc Drives that is available via
S.M.A.R.T., the Self-Monitoring, Analysis and Reporting
Technology.

Of particular interest about this software is its homepage,
which includes a compiled list of various hardware
monitoring chips that the software supports, and provides a
visual comparison of their major functions. It also includes
specific descriptions of most chips, which may include
comments in regards to the features and documentation
availability. [8]

3.2. lm_sensors
lm_sensors is a popular GPL-licensed package that could

only be used with the Linux kernel, such as in the
GNU/Linux (GNU’s Not Unix) environment. The package
has a fair amount of modularisation, and some parts of the
suite are standardised between drivers to allow for an
efficient functioning of several generalised end-user utilities.

3.3. healthd
healthd, an open-source BSD-licensed package for

FreeBSD, features a very complex all-in-one solution that
consists of two utilities: a daemon healthd and a client
healthdc.

In turn, healthd performs three entirely distinct functions:
it talks directly with the ISA or SMB buses to detect and
query hardware monitors; it performs comparison of the
previously read values from the sensors with the required
range as specified in the configuration file and reports any
abnormalities to syslogd(8); and it listens on the IANA-
assigned port number 1281 for requests via the healthd
protocol.

The healthdc client allows one to remotely connect to the
healthd daemon, and query the daemon for information
about the sensors.

As it is clear from the description, this healthd daemon is
overwhelmed with complexity, and does not follow the
UNIX approach of making things as simple, flexible and
abstract as they could possibly be made. Specifically, it does
not seem to provide any abstractions for writing drivers for
hardware monitors, and all definitions of various chipsets are
located in a single set of files.

healthd package has no support for any kind of fan
controlling, and it also does not modify the divisor bits, thus
on many systems with default fan divisors the minimum
detectable fan-speed would be 2657 RPM.

3.4. xmbmon
xmbmon is another package that provides interfacing

with hardware monitoring chips. The package consists of a
command-line utility mbmon and an X-client xmbmon. This
package is noteworthy because it supports many operating
systems at once — the webpage of the utility claims that

FreeBSD, NetBSD, OpenBSD and Linux are all supported.
Other noteworthy characteristic of the package is its support
for numerous hardware monitoring chips, and a certain level
of abstraction between drivers. Although this package does
not support fan-controlling, it is quite ahead of other similar
utilities for FreeBSD as far as monitoring features are
concerned. E.g. unlike healthd, mbmon modifies fan
divisors on many chips, and thus mbmon can detect slower
fans that go undetected with healthd.

3.5. NetBSD’s sysmon(4)
NetBSD is the most portable operating system in the

world that runs on a variety of devices, even on toasters.
From production servers in NASA to toasting fresh bread in
your personal kitchen, NetBSD provides a flexible approach
in developing an operating system for any kind of
environment, embedded or not. [9]

Speaking of toasters, there are reports that the TS-7200
based toaster uses sysctl(8), and not toastctl(8) as one might
imagine, in order to access various information about
readiness of a toast, and in order to control toasting
preferences, such as the toast burn level. [10]

Nonetheless, in spite of the flexibility and the possible
simplicity that is clearly associated with the sysctl(8)
interfacing, the general system hardware monitoring
interface in NetBSD was not done with sysctl(8), but a
distinct API infrastructure was created for monitoring and
controlling hardware monitoring chips. The infrastructure
itself consists of a device driver, /dev/sysmon, which
provides an abstraction layer between the end-user utilities
and the actual hardware monitoring device drivers, such as
lm(4).

NetBSD already contains many hardware monitoring
device drivers that interface with sysmon(4)/envsys(4), most
notable examples being lm(4) and viaenv(4). An utility
called envstat(8) is provided in /usr/sbin/envstat for querying
/dev/sysmon.

It must be noted, however, that the envsys(4) API is
considered experimental, and the entire API shall be
replaced by a sysctl(8) interface, should one be developed.
[11]

3.6. OpenBSD’s sensors.h
OpenBSD’s sensors.h is the infrastructure that we are

going to describe in greater detail; moreover, we will
provide some information on how it was improved and what
new functionality was added as a part of this project.

Originally, the framework was ported from the
aforementioned NetBSD framework by Alexander
Yurchenko, but instead of porting the sysmon(4) / envsys(4)
interfacing, a much simpler infrastructure was created that
‘just works’.

3.6.1. sensors.h
sys/sensors.h part of the framework defines the data-

structures that are used by sensors, and provides function
prototypes which are used by device drivers for adding and
deleting sensors, and by sysctl(3) in order to provide
requested sensors to the userland. (Prototypes of functions

904

that facilitate task scheduling for refreshment of the sensed
data by the device driver are also available in sensors.h;
however, we will not discuss task scheduling in this paper.)

3.6.2. kern_sensors.c
At the start of this project, drivers were adding sensors

using some simple macros that were defined in the header
file itself; however, this has since changed, and the
definitions of functions that are used in adding and removing
sensors are now located in kern/kern_sensors.c.

3.6.3. sysctl(3)
kern/kern_sysctl.c implements the kernel part of the

userspace API that is used by programmes like sensorsd(8)
and sysctl(8). A tree called ‘hw.sensors’ is dedicated
entirely for accessing the information from the sensors.

3.6.4. sysctl(8)
sbin/sysctl/sysctl.c provides the end-user interface for

general system controlling. It is also the preferred utility for
displaying the information about sensors, although with
sysctl(3) API anyone can write their own utility for
accessing this information directly from the kernel, and
displaying it in the way they please.

Before the results of the research accompanying this
paper were integrated into OpenBSD, the information about
sensors was displayed in a way similar to the following:
 tvc:constant {3205} sysctl hw.sensors.0
 hw.sensors.0=lm0, CPU VCore, 1.68 V DC

In this example, one can see that we ask the system for
the sensor numbered zero to be presented. In the output, the
sensor is identified as being attached to the lm0 device, the
description of the sensor is ‘CPU VCore’, and the last
updated output of the sensor is 1.68 volts DC.

3.6.5. sensorsd(8)
usr.sbin/sensorsd/sensorsd.c allows the user to specify

limits for particular sensors in the configuration file
/etc/sensorsd.conf, and when sensorsd is run, it queries
sensors using sysctl(3), and compares gathered values with
the limits specified by the user. If the values go out of
range, then sensorsd issues a warning into syslog(3), and
may also execute a user-specified command (i.e. it can
execute a command that may email, page, provide a visual or
audible alert to the user).

4. Design

In this section, we will try to analyse the possibilities for
updating OpenBSD’s sensors framework. The primary aim
of the discussion is focused on making it easier for the end-
user to query specific sensors on specific sensor chips. The
laid foundation has the purpose of building sound grounds
for later additions of functions such as controlling of fan
speeds.

In modifying the framework, we must take into account
the massive number of devices in OpenBSD that are capable
of attaching sensors: they range from standard temperature,
voltage and fan monitoring chips, to complex interfaces,
such as ipmi(4), to SCSI enclosures.

4.1. Improving in steps
When we have first contacted Theo de Raadt (the lead

architect and the founder of the OpenBSD project) with the
ideas about improving the infrastructure, his reaction was to
suggest that our proposed ideas are at first implemented
without adding any fan-controlling functionality. For
example, we have proposed to effectively change the way in
which sensors of a device are accessed from ‘hw.sensors.0’
style of addressing to ‘hw.sensors.lm0.volt0’.

In other words, it was agreed that changing the speed on
the third fan by a command similar to ‘sysctl
hw.sensors.12=50%’, and then monitoring the temperature it
affects by ‘sysctl hw.sensors.9’ is not going to be very
effective and flexible, so a change had to be made to the way
sensors are addressed. Therefore, the first step was to
implement the new addressing, and only then think about
implementing the functionality for allowing any kind of
user-specified control of the chip to take place.

4.2. How sysctl(8) works
Let us briefly explain of what happens you run sysctl(8)

to access the hw.sensors tree.
When you run ‘sysctl hw.sensors’, the sysctl(8) converts

the ‘hw’ and ‘sensors’ strings into their numerical
representation, for example, ‘hw’ turns out to be number 6
(as defined by the CTL_HW pre-processor constant), and
‘sensors’ turns out to be number 11 (HW_SENSORS
constant). These numbers form what is known as
Management Information Base (MIB), an array of integer
values used for making various sysctl(3) calls.

After sysctl(8) determines that a call for hardware
sensors is being made, it transfers control to a local function
called sysctl_sensors(), which then handles some further
processing of the string into the MIB elements.

When the turn finally comes to the final leaf, a sysctl(3)
kernel call is made to gather the latest snapshot of sensor
reading, and the results are interpreted and printed to the
user.

4.3. What we have proposed and implemented
We have proposed to have a different tree structure under

‘sysctl hw.sensors’. For example, the one that would allow
the end-user to access the temperature of the CPU on the
lm0 chip by typing ‘sysctl hw.sensors.lm0.temp1’, instead of
‘sysctl hw.sensors.8’ as it was before.

In turn, sysctl(3) MIB array will look as follows for
providing this information:

 CTL_HW
 HW_SENSORS
 (device number)
 (sensor type)
 (sensor number of this type on this
instance of the device)

As a comparison, before this change was made, the MIB
array for accessing hardware sensors looked as follows:

 CTL_HW
 HW_SENSORS
 (sensor number)

905

Obviously, device identifiers in our sysctl(8) examples
are literals, but sysctl(3) may only operate on integer nodes,
thus we must have a way to map literal names (i.e. strings
such as ‘lm0’) onto integer numbers. For this purpose, we
have made it possible to access generic information about
hardware monitoring sensor devices, by omitting the sensor
type and sensor number arguments from the MIB array. This
will allow userland programmes, such as sysctl(8) and
sensorsd(8), to map literal names of sensor devices to integer
numbers.

Now that we know how we want to access these sensors,
we must think of the way they will be stored and registered
from the device-driver point-of-view. Here, we have many
different options, which all vary by their performance,
flexibility and complexity. The obvious thing is to have
every sensor attached specifically to some driver, and not to
the common linked list as it was done previously. For the
list of drivers themselves, a linked list could be used in the
same way as it was previously used for the individual
sensors.

Due to length limitations of these conference
proceedings, we will omit the comparison between various
ways of handling sensor management in kernelspace, which
we have discussed extensively in our B. Sc. (Honours) Final
Year Project’s thesis at De Montfort University [12]. For
more information on the actual implementation that we have
realised and which was accepted by the OpenBSD Project,
the reader is advised to refer to the sensor_attach(9) manual
page [13], an OpenBSD Journal article about the new two-
level sensors framework [14] and OpenBSD’s source code
starting from 2006-12-23.

5. Conclusion and future plans

In this paper, we have attempted to present detailed
information on how microprocessor system hardware
monitors work from the programmers’ standpoint. We have
researched into the problems that the device-driver
developers may have to face with in implementing support
for such monitors, along with the expectation that the user
should have when using such drivers.

We have also provided an overview of major
programmes that can be used to monitor sensor activity on a
personal workstation. The situation with programmes on the
*BSD arena was explored throughout and OpenBSD’s
sysctl(8) approach was studied and explained in detail.

In tandem with this paper, a patch implementing the two-
level addressing interface for OpenBSD’s sysctl hardware
sensors was released and integrated into OpenBSD’s CVS
tree on 2006-12-23. As a part of this patch, 44 existing in-
kernel hardware monitoring device drivers were converted
from the old one-level API to the new two-level API. Most
importantly, the patch converted user utilities sysctl(8),
sensorsd(8) and ntpd(8) to the new two-level addressing, and
a patch for converting symon system monitoring utility was
also released and appropriately integrated.

A prototype of fan controlling functionality for hardware
monitoring chips was developed and successfully presented
on the B.Sc. (Hons) Final Year Project Viva at De Montfort

University, but not yet made available to the general public.
Future work will include developing a generalised scheme
for utilising existing sensors API to accomplish an effective
fan-speed controlling interface via the sysctl(8) mechanism.

Acknowledgements

Most parts of this paper were written as a part of the
B. Sc. (Hons) Final Year Computing Project supervised by
Dr. Jordan Dimitrov and Prof. Mikhail Goman at De
Montfort University, where the author was engaged in a one-
year exchange from East Carolina University, but was
awarded an unplanned Bachelor of Science (Honours) in
Computer Science diploma nonetheless.

We would like to thank everyone who made this paper
and our experiences in England possible and enjoyable, and
specifically Thomas W. Rivers Foreign Exchange
Endowment Fund for providing us with a scholarship award
that in part helped fund this study abroad experience.

Special thanks also go to Theo de Raadt, Alexander
Yurchenko and David Gwynne of the OpenBSD project.

References

[1] The I2C-bus specification, Version 2.1, January 2000, Philips
Semiconductor, http://www.semiconductors.philips.com/acrobat_down
load/literature/9398/39340011.pdf

[2] Low Pin Count (LPC) Interface Specification, Intel Industry
Specification, http://www.intel.com/design/chipsets/industry/lpc.htm

[3] LM78 Microprocessor System Hardware Monitor, February 2002,
National Semiconductor, http://cache.national.com/ds/LM/LM78.pdf

[4] W83627HF/F Winbond I/O, November 2002, Winbond Electronics,
http://www.winbond.com/PDF/sheet/w83627hf.pdf

[5] Interview with Theo de Raadt, 2 May 2006, KernelTrap, http://
kerneltrap.org/node/6550

[6] ATX Specification 2.2, 2004, Intel Corporation, http://www.
formfactors.org/developer/specs/atx2_2.pdf

[7] Datasheet for SCH5017, 2005-10-17, Standard Microsystems
Corporation (SMSC), http://www.smsc.com/main/datasheets/5017.pdf

[8] SpeedFan — access temperature sensors in your computer, 2000/2006,
Alfredo Milani Comparetti, http://www.almico.com/speedfan.php

[9] NetBSD Controlled Toaster, 2005-10, Technologic Systems, http://
www.embeddedarm.com/news/netbsd_toaster.htm

[10] Christian von Kleist, “The NetBSD Toaster”, Slashdot, 2005-08-11,
http://hardware.slashdot.org/comments.pl?sid=158747&cid=13298702

[11] Tim Rightnour and Bill Squier, “envsys(4) — environmental systems
API manual page”, The NetBSD Foundation, 2000/2006, http://
man.netbsd.org/cgi-bin/man-cgi?envsys+4

[12] Constantine A. Murenin, B. Sc. (Hons) Final Year Project Main Report:
“Microprocessor system hardware monitors. Interfacing on OpenBSD
with sysctl(8).”, Faculty of Computing Sciences and Engineering, De
Montfort University, Leicester, UK, May 2006.

[13] Constantine A. Murenin and Michael Knudsen, “sensor_attach(9) —
sensors framework API manual page”, The OpenBSD Project,
December 2006, http://www.openbsd.org/cgi-bin/man.cgi?query=
sensor_attach&sektion=9&manpath=OpenBSD+4.1

[14] Constantine A. Murenin, “New two-level sensor API”, The OpenBSD
Journal, December 2006, http://undeadly.org/cgi?action=article&sid=
20061230235005

906

	MAIN MENU

	AUTHOR INDEX
	SESSION INDEX

	SEARCH
	PRINT

